TRACING A JAVA PROGRAM ON JAVA VIRTUAL MACHINE

Karthika Nanthakumar, Tristan M. Basa, Gerhard Dueck
University of New Brunswick
Faculty of Computer Science
knanthak@unb.ca, tristan.basa@gmail.com, gdueck@unb.ca

INTRODUCTION

 Automatic Memory Management (AMM). The Java Virtual Machine
(JVM) feature responsible for the following memory-handling tasks: object
memory allocation, identification, and deallocation. 4]

Tracefiles: Due to the deterministic nature of a simulator it needs an input
file that it can run multiple times in order to present results. This list of
commands Is called a tracefile.

Simulator: A simulation program imitates the operation of JVM on a very
abstract level. Therefore this simulator will only be able to create objects
and move them virtually in a simulated heap. This allows the fast
prototyping of new GC techniques.

Goal: Generate a realistic memory trace of a Java program by
iInstrumenting the JVM.

‘Problem: If the tracefile is created artificially, then this may not reflect the
behavior of a Java program.

/dea: Perform trace dumps whenever object allocation, reassignment, and
deallocation occurs in the JVM.

BACKGROUND

The configuration of the artificial tracefile is given below:

Parameter Description Value
rootsetSize Size of rootset per thread 14
threadsNumber Number of threads 5

ratioAllocationSetpointer Number of allocation operations 70
Probability of setting a reference

ratioNullpointerAssighment to NULL instead an object 20
maximumpPointers maximum reference slots 10
minimumpPayload minimum size for an object 1

maximumpPayload maximum size for an object 64

Three events In the JVM are relevant in creating the tracefile:

1. Capturing Object Allocation: In JVM, object allocation Is performed
under two functions. Both function calls must be caught in order to
dump needed information for the tracefile.

2. Capturing Change in Object Reference: JVM has read and write
barriers that intercept the execution of an application. Change in object
reference are tracked in these barriers.

3. Rootset Dump: In order to perform a root set dump, two steps are
needed: stop-the-world and root set source scanning. Stop-the-world
(only the root scanning thread will be running) can only be performed
when the VM Is at a safe point. This is achieved by signalling the event
AsyncEvent in the JVM. This Is needed since thread stack frames keep
changing while the threads are running.

))
UNB

|IBM Centre for Advanced Studies - Atlantic

TRACEFILE FORMAT

The tracefile has the following instructions:

1.a Ti O] Ss Nn
-- Allocate an object with the following characteristics:
| IS the thread number;
] IS the object Id;
s Is the payload of the object;
- nis the number of pointers In the object.
2. +Ti Oj

-- Add object | as a root to thread |
3. - Ti Oj

-- Remove object | from the root set of thread |
4.r Ti Pm #i Q]

-- Set the ith pointer of object m to point to object j:

EVALUATION

The figure below shows the statistics between the parameter values of
an artificial tracefile (Artificial Trace) and our trace output (Real Trace).

maximumPointers

112

maximumPayload

ratioNullpointerAssignment

ratioAllocation

0 20 40 =10 g0 100 120

B Real Trace B Artificial Trace

FUTURE WORK

* Implement a dynamic rootset. Currently, a maximum size for the
rootset Is chosen. In the JVM however, the size of the rootset varies
dramatically. Having a dynamic rootset size will make the system
more efficient in terms of memory usage.

* Consider information relevant only to the target Java application.
Many memory management operations being performed are
iInternal to JVM. Ignoring these operations would result in fewer
dumps, and thus a more compact tracefile.

FACULTY OF COMPUTER SCIENCE

