
TRACING A JAVA PROGRAM ON JAVA VIRTUAL MACHINE

INTRODUCTION

• Automatic Memory Management (AMM): The Java Virtual Machine
(JVM) feature responsible for the following memory-handling tasks: object
memory allocation, identification, and deallocation. [2]

Tracefiles: Due to the deterministic nature of a simulator it needs an input
file that it can run multiple times in order to present results. This list of
commands is called a tracefile.

•Simulator: A simulation program imitates the operation of JVM on a very
abstract level. Therefore this simulator will only be able to create objects
and move them virtually in a simulated heap. This allows the fast
prototyping of new GC techniques.

•Goal: Generate a realistic memory trace of a Java program by
instrumenting the JVM.

•Problem: If the tracefile is created artificially, then this may not reflect the
behavior of a Java program.

•Idea: Perform trace dumps whenever object allocation, reassignment, and
deallocation occurs in the JVM.

TRACEFILE FORMAT

The tracefile has the following instructions:

 1. a Ti Oj Ss Nn

 -- Allocate an object with the following characteristics:

 · i is the thread number;

 · j is the object id;

 · s is the payload of the object;

 · n is the number of pointers in the object.

 2. + Ti Oj

 -- Add object j as a root to thread i

 3. - Ti Oj

 -- Remove object j from the root set of thread i

 4. r Ti Pm #i Oj

 -- Set the ith pointer of object m to point to object j:

 Karthika Nanthakumar, Tristan M. Basa, Gerhard Dueck

University of New Brunswick

Faculty of Computer Science

knanthak@unb.ca, tristan.basa@gmail.com, gdueck@unb.ca

BACKGROUND

The configuration of the artificial tracefile is given below:

Three events in the JVM are relevant in creating the tracefile:

1. Capturing Object Allocation: In JVM, object allocation is performed
under two functions. Both function calls must be caught in order to
dump needed information for the tracefile.

2. Capturing Change in Object Reference: JVM has read and write
barriers that intercept the execution of an application. Change in object
reference are tracked in these barriers.

3. Rootset Dump: In order to perform a root set dump, two steps are
needed: stop-the-world and root set source scanning. Stop-the-world
(only the root scanning thread will be running) can only be performed
when the VM is at a safe point. This is achieved by signalling the event
AsyncEvent in the JVM. This is needed since thread stack frames keep
changing while the threads are running.

EVALUATION

 The figure below shows the statistics between the parameter values of
an artificial tracefile (Artificial Trace) and our trace output (Real Trace).

FUTURE WORK

• Implement a dynamic rootset. Currently, a maximum size for the
rootset is chosen. In the JVM however, the size of the rootset varies
dramatically. Having a dynamic rootset size will make the system
more efficient in terms of memory usage.

• Consider information relevant only to the target Java application.
Many memory management operations being performed are
internal to JVM. Ignoring these operations would result in fewer
dumps, and thus a more compact tracefile.

